

International Journal of Cardiology Research

ISSN Print: 2663-4104
ISSN Online: 2663-4112
Impact Factor: RJIF 5.29
IJCR 2026; 8(1): 14-19
www.cardiologyjournal.in
Received: 20-11-2025
Accepted: 24-12-2025

Dr. Ahmed Hamed Khalaf
IBN-Al Bitar Centre for
Cardiac Surgery, Baghdad,
Iraq

Ali Ghanim Jadaan AlGburi
IBN-Al Bitar Centre for
Cardiac Surgery, Baghdad,
Iraq

Raid Adel Aziz Al-Ano
IBN-Nafees Teaching
Hospital, Baghdad, Iraq

Admission high density lipoprotein and left main coronary disease in acute coronary syndromes: A prospective cohort from Iraq

Ahmed Hamed Khalaf, Ali Ghanim Jadaan AlGburi and Raid Adel Aziz Al-Ano

DOI: <https://www.doi.org/10.33545/26634104.2026.v8.i1a.88>

Abstract

Background: Both low-density lipoproteins and high-density lipoproteins have been proven in epidemiologic research to be significant risk factors for cardiovascular disease.

Aim of study: To determine the relation between the level of admission high-density lipoproteins in patients with acute coronary syndrome and coronary artery lesion severity, in-hospital and one-month mortality.

Methods: A prospective study that was conducted at IBN-Albitar Center during a period of 11 months from 1st of February 2024 till 1st of January 2025. It included 164 patients diagnosed with acute coronary syndrome who underwent coronary angiography during hospitalization. Electrocardiogram was done for all study patients; Echocardiography was done for all patients within 24 hrs from admission. A blood sample was taken from all patients to perform investigation: Troponin level detection, s. high density lipoprotein and other lipid profile within 24 hrs from admission. The level of s. high density lipoprotein was compared according to the outcome and severity of angiography.

Results: In this study, 7.3% of study patients died during hospitalization, while no death reported during one-month of management. No statistically significant differences in means of high-density lipoprotein, low density lipoprotein, total cholesterol, and triglyceride between patients who died and patients who survived during hospitalization. Mean of high-density lipoprotein level was significantly lower in patients with LMS lesion than those without LMS lesion.

Conclusion: Lower high-density lipoproteins levels at admission in patients with acute coronary syndrome was significantly related to the presence of LMS disease. Lower high-density lipoproteins level noticed in all in-hospital deaths, however no statistically significant relation could be found.

Keywords: Iraq, acute coronary syndrome, high density lipoprotein, angiography, mortality

Introduction

Death from coronary artery disease (CAD) is still at the top of the global to-do list. Heart failure, unstable angina, Acute Coronary Syndromes (ACS), and unexpected mortality are some of the clinical signs ^[1]. Death from Coronary Artery Disease (CAD) is still at the top of the global to-do list. Heart failure, unstable angina, Acute Coronary Syndromes (ACS), and unexpected mortality are some of the clinical signs ^[2]. Without immediate medical attention, over 25% of myocardial infarction instances result in death. Within the first twenty-four hours after symptoms appear, 50% of fatalities occur, and 40% of people afflicted die within the first thirty days. Those who make it to the hospital have a considerably better prognosis, with a 28-day survival rate of over 85%. The mortality rate for patients with unstable angina is about half that of patients with myocardial infarction. Irrespective of the severity of myocardial infarction, arrhythmia is the leading cause of premature death ^[3]. Proteins called apolipoproteins with lipids like cholestryly esters, free cholesterol, and phospholipids form a spherical micelle called a high-density lipoprotein (HDL) ^[4]. There may be more reasonable ways to approach lipid-modifying treatment if we knew more about the associations between plasma lipids or lipoproteins and post-ACS prognosis. There is some evidence that ACS triggers an acute-phase systemic inflammatory response, which can alter lipid and lipoprotein concentrations in circulation ^[5]. A drop in HDL-C follows an ACS event.

Corresponding Author:
Dr. Ahmed Hamed Khalaf
IBN-Al Bitar Centre for
Cardiac Surgery, Baghdad,
Iraq

This level starts to drop within the first twenty-four hours following an ACS event, reaches rock bottom around the one-week mark, and then starts to rise again gradually as metabolic steady state is achieved within the one-month mark [6, 7]. Reduced levels of LDL-C are more noticeable than reduced levels of HDL-C. It has been suggested that following ACS, HDL's anti-inflammatory, cholesterol efflux, and antioxidant capabilities are changed [8]. The magnitude of change in lipoprotein concentrations is related to the extent of myocardial necrosis [9]. It is recommended to take precise measurements either immediately following presentation or a few weeks later due to the acute-phase effects on lipids and lipoproteins. It may be safely assumed, however, that metabolic steady state LDL-C levels will nearly surely be greater than optimal if they are during the acute-phase reaction following an ACS episode [10]. The aim of this study is to correlate between the level of admission high-density lipoproteins in patients with acute coronary syndrome and coronary artery lesion severity, in-hospital and one-month mortality.

Materials and Methods

Study design, setting and time

From February 1, 2024, to January 1, 2025, a prospective study was implemented by researchers at Iraq's Ibn-Al Bitar Centre for Cardiac Surgery.

Study Population

The study included 164 patients diagnosed with ACS including STEMI, NSTEMI, and UA who underwent coronary angiography during hospitalization. They were informed about the nature of the study and verbal consent was obtained from them. Diagnosis of ACS was based on electrocardiogram, clinical symptoms and cardiac markers. It can be divided into three categories: STEMI, NSTEMI, and UA. Patients with more than 24 hrs. of presentations and those with a known case of hereditary hypercholesterolemia were excluded from this study. A questionnaire was applied to all enrolled patients including questions to gather the following information: Age and gender, risk factors (Hypertension, diabetes mellitus, smoking, history of IHD, and family history of IHD), use of statin, clinical symptoms (chest pain, shortness of breath, palpitation, syncope, and other symptoms in the cardiovascular system). This questionnaire included measuring weight and height to calculate Body Mass Index (BMI) level. Patients were classified according to BMI as: Normal ($\leq 24.99 \text{ kg/m}^2$), overweight (25-29.99 kg/m^2), and obese ($\geq 30 \text{ kg/m}^2$).

Workup

- Electrocardiogram was done for all study patients.
- Echocardiography was done for all patients within 24 hrs. from admission by Echo machine GE vivid E9 to assess the Left Ventricular function by ejection fraction, regional wall motion abnormalities, and any mechanical complications).
- Left Ventricular function was classified according the following (Table 1) [11]:
- Coronary angiography with or without Percutaneous Coronary Intervention was done through the femoral approach by seldinger technique using Philips catheterization machine. All the operations and the

decisions were done under direct supervision of the consultant operator.

- A blood sample was taken from all patients to perform the following investigation:
 - Quantitative Troponin test.
 - Lipid profile within 24 hrs from admission.
 - Complete blood count, renal function test, random blood sugar, and viral screen (routinely).
- Results of the coronary angiography were taken according to:

Type of the vessel lesion

- Left Main Stem (LMS).
- Left Anterior Descending Artery (LAD).
- Left Circumflex Artery (LCx).
- Right Coronary Artery (RCA).

Number of vessel lesions

- Single vessel disease
- Two vessel disease
- Three vessel disease

The outcome of this study included mortality that was followed and recorded directly in-hospital during admission and one month by telephone contact.

Ethical Considerations

The Declaration of Helsinki lays forth the ground rules for how this study should be carried out ethically. Approval from Ibn Sina University of Medical and Pharmaceutical Sciences Ethics Committee was obtained. After all patients or their surrogates were informed about the objectives and procedures of the study, we acquired a written informed consent from them. Data security was guaranteed by utilizing identifying coding and storing data in a password-protected environment.

Statistical analysis

Statistical Package for Social Sciences (SPSS) version 26 was used to analyze the data. The information is shown as the average, the standard deviation, and the range. Information is organized into categories with percentages and frequencies displayed. The continuous variables were compared using an independent t-test with two tails. For statistical significance, a P-value of less than 0.05 was used.

Results

In this study, mean of age was 55.63 ± 8.7 years; 78% were males; 43.9% were overweight; 48.8% were current smokers; 36.6% were hypertensive; 36.6% were diabetics; and 7.3% were using anti-statin drugs. IHD was presented in 12.2% of study patients and family history of IHD was documented in 9.8% of cases (Table 2).

In the current study, LMS lesion occurred in 7.3% of study patients, while LAD lesion occurred in 78%. LCX lesion was noticed in 39% of study patients, while RCA lesion was noticed in 43.9%. We noticed that 36.6% of study patients had single affected artery; 7.3% had died during hospitalization, while no death reported during one-month of management (Table 3).

No statistically significant differences in means of HDL, LDL, total cholesterol, and TG between patients who died and patients who survived during hospitalization (Table 4).

Mean of HDL level was significantly lower in patients with LMS lesion than those without LMS lesion (33 versus 36.19 mg/dl, $P=0.001$). No statistically significant differences ($p\geq0.05$) in mean of HDL in all other comparisons (Table 5).

Discussion

The lipid content of atherosclerotic plaques is connected to their sensitivity to rupture and initiate ACS, and plasma lipoproteins are implicated in the origin of atherosclerosis [12]. Anti-inflammatory and antioxidant actions are two of HDL's roles that have recently gotten a lot of attention. HDL's anti-oxidant and anti-inflammatory properties have been linked to a reduced risk of cardiovascular disease [13]. In this study, HDL level was low in 72% of study patients; LDL was high in 53%; total cholesterol level was high in 35.6%; and TG level was high in 51.8% which is different from result obtained by Pintó *et al* study in 2010, in which high LDL found in 66.1%, high TG level observed in 19.4% and mean of cholesterol was 4.87 ± 1.19 mmol/L [14].

In this study, mean of HDL level was significantly lower in patients with LMS lesion than those without (33 versus 36.19 mg/dl, $P=0.001$). No statistically significant differences in means of HDL, LDL, total cholesterol, and TG between patients who died and patients who survived during hospitalization.

Different results seen in Lee CH *et al* study in 2016, in which patients with a higher HDL-C level at admission showed significantly lower rates of 12-month major adverse cardiac events, particularly cardiac and all-cause mortality. These beneficial effects were observed in the rates of in-hospital mortality and 1-month major adverse cardiac events during the early period after acute MI [15]. Furthermore, Thabet NI *et al* study in 2015 found that impact of HDL-C on in-hospital outcomes revealed that low HDL-C was associated with higher all in hospital morbidity and mortality with a different association in each type, as in form of congestive heart failure (CHF) ($P=0.01$), recurrent ischemic attacks ($P=0.01$), re-infarction ($P=0.29$), cardiogenic shock ($P=0.013$) and Death ($P=0.012$) [16].

Possible causes for the discrepancies between the aforementioned research include different sample sizes,

unhealthy eating habits, lack of physical activity, urbanization, economic growth, stress, and physical inactivity. In fact, there is no research that takes into consideration the relation between lipid profile and the site of lesion, so we discuss its relation to ACS.

In Carnuta *et al* study in 2017, results obtained showed that plasma cholesterol levels were significantly decreased in stable angina patients compared to normal subjects, probably due to the intensive treatment with statins, but they were significantly higher in ACS compared to stable angina plasma [17].

Multiple anti-atherogenic effects of the HDL particle are thought to be mediated by its role in eliminating cholesterol from macrophages via "macrophage cholesterol efflux" [18]. Furthermore, because cholesterol export capacity has a strong inverse connection with cardiovascular risk, it was predicted that boosting capacity would be another therapeutic target [19]. In addition, the vascular effects of HDL in patients with a variety of cardiovascular diseases differ significantly from those of HDL in healthy subjects, leading to the term "HDL dysfunction" [20]. HDL possesses a complement of antioxidant enzymes that act to maintain an anti-inflammatory state in the absence of inflammation. These antioxidant enzymes are inactivated in the presence of systemic inflammation, such as in acute coronary syndrome, and HDL accumulates oxidized lipids and proteins, making it proinflammatory [21]. Some other studies have suggested that measuring the quality and novel functions of HDL could provide an improved means of identifying subjects at increased risk for atherosclerosis [19]. HDL's quality and function are appealing targets for new therapeutics. Other recent research have shown that HDL subclasses, particularly HDL3-C, have an inverse relationship with coronary heart disease [22].

Study Limitations

This study has a number of limitations. First, the statistical power is limited, particularly for mortality analysis, due to the small sample size (N=164) and single-center design, as well as the low event rate (12 in-hospital deaths). Second, limited generalizability as lifestyle and healthcare context may differ from other settings.

Table 1: Left Ventricular function assessment according to the gender

LV EF%	Normal	Mild dysfunction	Moderate dysfunction	Severe dysfunction
Male	52-72	41-51	30-40	< 30
Female	54-74	41-53	30-40	<30

Table 2: Distribution of study patients by certain characteristics

Variable	No (N= 164)	Percentage (%)
Age (Year)		
< 50	36	22.0
50-59	64	39.0
≥ 60	64	39.0
Gender		
Male	128	78.0
Female	36	22.0
BMI level		
Normal	36	22.0
Overweight	72	43.9
Obese	56	34.1
Hypertension		

Yes	60	36.6
No	104	63.4
Diabetes Mellitus		
Yes	60	36.6
No	104	63.4
Smoking		
Current smoker	80	48.8
Non-smoker	84	51.2
Ischemic heart disease		
Yes	20	12.2
No	144	87.8
Family history of IHD		
Yes	16	9.8
No	148	90.2
Anti-statin use		
Yes	12	7.3
No	152	92.7
Clinical symptom		
STEMI	88	53.7
Non STEMI	48	29.3
UA	28	17.0
Ejection fraction (%)		
Normal (52%-74%)	54	32.9
Mildly abnormal (41%-51%)	86	52.4
Moderately abnormal (30%-40%)	24	14.7

Table 3: Distribution of study patients by angiographic severity and mortality

Variable	No (N=164)	Percentage (%)
LMS Lesion		
Yes	12	7.3
No	152	92.7
LAD Lesion		
Yes	128	78.0
No	36	22.0
LCX Lesion		
Yes	64	39.0
No	100	61.0
RCA Lesion		
Yes	92	43.9
No	72	56.1
Number of affected arteries		
No affected arteries	16	9.8
Single	60	36.6
Two	40	24.4
Three	48	29.3
In-hospital mortality		
Died	12	7.3
Survived	152	92.7
One month mortality		
Survived	164	100.0

Table 4: Comparison in HDL and other lipid profile according to in hospital mortality

Variable	In hospital mortality		P-Value
	Died, Mean \pm SD	Survived, Mean \pm SD	
HDL (mg/dl)	35.33 \pm 0.98	36.01 \pm 7.12	0.293
LDL (mg/dl)	108.66 \pm 18.4	123.6 \pm 32.3	0.116
Total cholesterol (mg/dl)	176.0 \pm 88.0	185.22 \pm 49.9	0.726
TG (mg/dl)	155.0 \pm 11.2	148.3 \pm 42.3	0.16

Table 5: Comparison in HDL level according to angiography severity

Variable	HDL level (mg/dl), Mean \pm SD	P-Value
LMS Lesion		
Yes	33.0 \pm 1.7	0.001
No	36.19 \pm 7.1	
LAD Lesion		
Yes	34.22 \pm 5.34	0.233
No	36.23 \pm 7.1	
LCX Lesion		
Yes	35.16 \pm 5.7	0.084
No	37.21 \pm 8.3	
RCA Lesion		
Yes	36.77 \pm 6.3	0.172
No	35.32 \pm 7.2	
Number of affected arteries		
No affected arteries	35.0 \pm 6.7	0.28
One	34.86 \pm 5.0	
Two	37.4 \pm 7.4	
Three	36.45 \pm 8.2	

Conclusion

Lower HDL levels on admission in patients with ACS were significantly related to the presence of LMS disease. Lower HDL level noticed in all In-hospital deaths, however no statistically significant relation could be found.

Acknowledgments

The authors acknowledge Ibn-Al Bitar Centre for Cardiac Surgery Clinic staff whose assistance was used in recruitment and data collection, the patients for their commitment, and the clinicians, and laboratory teams for their support in treatment delivery and sample analysis.

Conflict of Interest

Not available

Financial Support

Not available

References

1. Kotecha T, Rakhit RD. Acute coronary syndromes. Clin Med (Lond). 2016;16(Suppl 6):s43-8.
2. Guedeney P, Collet JP. Diagnosis and Management of Acute Coronary Syndrome: What is New and Why? Insight From the 2020 European Society of Cardiology Guidelines. J Clin Med. 2020;9(11):3474.
3. Gomar SF, Quilis PC, Leischik R, Lucia A. Epidemiology of coronary heart disease and acute coronary syndrome. Ann Transl Med. 2016;4(13):256.
4. Lund-Katz S, Phillips MC. High density lipoprotein structure-function and role in reverse cholesterol transport. Subcell Biochem. 2010;51:183-227.
5. Fresco C, Maggioni AP, Signorini S, Merlini PA, Mocarelli P, Fabbri G, et al. Variations in lipoprotein levels after myocardial infarction and unstable angina: the LATIN trial. Ital Heart J. 2002;3(10):587-92.
6. Chandra KS, Bansal M, Nair T, Iyengar SS, Gupta R, Manchanda SC, et al. Consensus statement on management of dyslipidemia in Indian subjects. Indian Heart J. 2014;66 Suppl 3:S1-51.
7. Jiang J, Zhou YJ, Li JJ, Ge JB, Feng YQ, Huo Y, et al. Uncontrolled hyperlipidemia in Chinese patients who experienced acute coronary syndrome: an observational study. Ther Clin Risk Manag. 2018;14:2255-62.
8. Brites F, Martin M, Guilliams I, Kontush A. Antioxidative activity of high-density lipoprotein (HDL): Mechanistic insights into potential clinical benefit. BBA Clin. 2017;8:66-77.
9. Bodde MC, Hermans MPJ, Wolterbeek R, Cobbaert CM, Laarse VDA, Schalij MJ, et al. Plasma LDL-cholesterol level at admission is independently associated with infarct size in patients with st-segment elevation myocardial infarction treated with primary percutaneous coronary intervention. Cardiol Ther. 2019;8(1):55-67.
10. Schiele F, Farnier M, Krempf M, Bruckert E, Ferrières J, Angoulvant D, et al. A consensus statement on lipid management after acute coronary syndrome. Eur Heart J Acute Cardiovasc Care. 2018;7(6):532-43.
11. Lang RM, Badano LP, Mor-Avi V, Afilalo J, Armstrong A, Ernande L, et al. Recommendations for cardiac chamber quantification by echocardiography in adults: an update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. Eur Heart J Cardiovasc Imaging. 2015;16(3):233-71.
12. Sabatine MS, Antman EM. The thrombolysis in myocardial infarction risk score in unstable angina/non-ST-segment elevation myocardial infarction. J Am Coll Cardiol. 2003;41(4 Suppl):S89-95.
13. Kontush A, Chapman MJ. Functionally defective high-density lipoprotein: A new therapeutic target at the crossroads of dyslipidemia, inflammation, and atherosclerosis. Pharmacol Rev. 2006;58(3):342-74.
14. Pintó X, Millán J, Muñoz A, Corbella E, Mijares HA, Zuñiga M, et al. A very high prevalence of low HDL cholesterol in Spanish patients with acute coronary syndromes. Clin Cardiol. 2010;33(7):418-23.
15. Lee CH, Woo JS, Park CB, Cho JM, Ahn YK, Kim CJ, et al. Roles of high-density lipoprotein cholesterol in patients with acute myocardial infarction. Medicine (Baltimore). 2016;95(18):e3557.
16. Thabet N, Hassanin H, Kamal Y. Study of high density lipoprotein cholesterol among patients with acute coronary syndrome in Sohag University Hospital. J Cardiol Curr Res. 2015;2(5):00073.
17. Carnuta MG, Stancu CS, Toma L, Sanda GM, Niculescu LS, Deleanu M, et al. Dysfunctional high-density lipoproteins have distinct composition,

diminished anti-inflammatory potential and discriminate acute coronary syndrome from stable coronary artery disease patients. *Sci Rep.* 2017;7(1):1-13.

18. Rosenson RS, Brewer HB Jr, Davidson WS, Fayad ZA, Fuster V, Goldstein J, *et al.* Cholesterol efflux and atheroprotection: advancing the concept of reverse cholesterol transport. *Circulation.* 2012;125(15):1905-19.
19. Navab M, Anantharamaiah GM, Reddy ST, Van Lenten BJ, Ansell BJ, Fogelman AM. Mechanisms of disease: Proatherogenic HDL—an evolving field. *Nat Clin Pract Endocrinol Metab.* 2006;2(9):504-11.
20. Rohatgi A, Khera A, Berry JD, Givens EG, Ayers CR, Wedin KE, *et al.* HDL cholesterol efflux capacity and incident cardiovascular events. *N Engl J Med.* 2014;371(25):2383-93.
21. Voight BF, Peloso GM, Orho-Melander M, Frikke-Schmidt R, Barbalic M, Jensen MK, *et al.* Plasma HDL cholesterol and risk of myocardial infarction: A Mendelian randomisation study. *Lancet.* 2012;380(9841):572-80.
22. Joshi PH, Toth PP, Lirette ST, Griswold ME, Massaro JM, Martin SS, *et al.* Association of high-density lipoprotein subclasses and incident coronary heart disease: The Jackson Heart and Framingham Offspring Cohort Studies. *Eur J Prev Cardiol.* 2016;23(1):41-9.

How to Cite This Article

Khalaf AH, AlGburi AGJ, Al-Ano RAA. Admission high density lipoprotein and left main coronary disease in acute coronary syndromes: A prospective cohort from Iraq. *International Journal of Cardiology Research* 2026;8(1):14-19.

Creative Commons (CC) License

This is an open access journal, and articles are distributed under the terms of the Creative Commons Attribution-Non Commercial-Share Alike 4.0 International (CC BY-NC-SA 4.0) License, which allows others to remix, tweak, and build upon the work non-commercially, as long as appropriate credit is given and the new creations are licensed under the identical terms.